

MARQUEE BMP

TECHNICAL DATA 08-09-2021

1000 Western Drive Brunswick, OH 44212 PHONE: 330-225-3200 FAX: 330-225-1499 www.columbiachemical.com

MARQUEE BMP BRIGHT MID PHOSPHOROUS ELECTROLESS NICKEL PLATING PROCESS

MARQUEE BMP	has one of the fastest deposition rates throughout the life of the bath.
MARQUEE BMP	meets ASTM-B-733 and AMS-2404 C specifications.
MARQUEE BMP	is a simple two component process with an easy to use 1:1 replenishment rate.
MARQUEE BMP	provides an extremely deep, brilliant decorative finish.
MARQUEE BMP	produces uniform plating thickness and hardness.
MARQUEE BMP	has excellent stability with very long solution life up to 10+ turnovers.
MARQUEE BMP	has optional additive for self-regulating pH control, making process simple to operate.

OPERATING PARAMETERS

	RANGE	
Nickel Metal:	5.25 - 6 g/L (0.7 - 0.8 oz/gal)	
Operating Temperature:	190 - 197° F (88 - 92° C)	
pH:	4.4 - 4.9 (4.8 optimum)	
Bath Loading:	0.5 - 2.50 dm²/L (0.20 - 1.0 ft²/gal)	
Typical Plating Rate:	19.6 micron/hr. (0.77 mil/hr.)	

SOLUTION MAKEUP

MARQUEE BMP-A-11:	6.0 %/vol
MARQUEE BMP-B-11:	15.0 %/vol
MARQUEE BMP-C-11:	Not required for make-up
MARQUEE BMP-CSR-11:	Not required for make-up

It is important to follow these steps when making a new solution. Taking shortcuts can increase the cost of your electroless nickel process.

- 1. Remove the old operating solution.
- 2. Remove the old filter bags or cartridge filters. If necessary, re-seal the filter unit. Fill the tank with 50%/vol Nitric acid.
- 3. Circulate the solution through the pumps and filter housings. Turn off air agitation. Allow the solution to contact all the surfaces that it would contact when in operation. Allow the solution to stand overnight to completely strip and passivate the tank.
- 4. Remove the nitric acid solution from the tank.
- 5. Rinse the tank/ pumps and filter housings thoroughly.
- 6. Fill the tank with water higher than the level of the nitric solution and add approximately 1 liter Ammonium hydroxide per 400 liters of volume. Allow this solution to circulate for 1 hour. While the solution is circulating, turn the agitation on and off. The ammonium hydroxide will neutralize the Nitric acid.
- 7. Drain the system then rinse with clean water. Test the rinse water for nitrates (Fisher Scientific carries M-10020 EM quant test strips for testing for nitrates).
- 8. Install new filter bags or cartridges.
- 9. Equipment is now ready for a new operating solution.
- 10. Fill tank to half its volume with distilled or D.I. water.
- 11. Add the required amount of BMP-A-11 and mix well.
- 12. Add the required amount of BMP-B-11 and mix well.
- 13. Add distilled or D.I. water to volume and mix well.
- 14. Check pH and adjust to a pH of 4.8. Use dilute 1:1ammonium hydroxide or potassium Hydroxide to raise the pH. Use 20%/volume sulfuric acid to lower the pH.

EQUIPMENT

TANKS

Tanks sized less than 500 gallons should be constructed of high density, natural, unpigmented, polypropylene. It is recommended that two tanks are set-up so a spare is available should there be nickel build-up on the heaters or tank. Contact your Columbia Chemical representative for recommendations.

HEATERS

316 Stainless Steel heat exchanger, PTFE steam coils, or electric immersion heaters fabricated from PTFE or 316 stainless steel is recommended.

AGITATION

Clean, mild air agitation from a low-pressure blower is recommended. Other means of agitation may be used such as mechanical or reciprocal.

MAINTENANCE ADDITIONS

MARQUEE BMP HAS TWO OPTIONS FOR REPLENISHMENT OF THE C COMPONENT:

MARQUEE BMP-C-11: This additive does not contain pH Control additives so ammonium hydroxide will need to be added to control the pH during operation.

MARQUEE BMP-CSR-11: This additive has the necessary ingredients so the pH is self-regulating adjustment will not normally be required.

MARQUEE BMP-A-11 See replenishment schedule below.

MARQUEE BMP-C-11 See replenishment schedule below.

or

MARQUEE BMP-CSR-11

Nickel Content by Analysis	%Nickel Activity	Amount of BMP-A-11 and (BMP-C-11 or BMP-CSR-11) to be added
6.0 g/L (0.80 oz/gal)	100%	0 ml/L (0.0 fl.oz./gal)
5.7 g/L (0.76 oz/gal)	95%	3 ml/L (0.38 fl.oz./gal)
5.4 g/L (0.72 oz/gal)	90%	6 ml/L (0.76 fl.oz./gal)
5.1 g/L (0.68 oz/gal)	85%	9 ml/L (1.15 fl.oz./gal)
4.8 g/L (0.64 oz/gal)	80%	12 ml/L (1.54 fl.oz./gal)
4.5 g/L (0.60 oz/gal)	75%	15 ml/L (1.92 fl.oz./gal)
4.2 g/L (0.56 oz/gal)	70%	18ml/L (2.30 fl.oz./gal)

Regular analysis of the nickel content should be the basis for additions of the BMP-A-11 and the BMP-C-11/BMP-CSR-11. Add back equivalent amounts of the BMP-A-11 and BMP-C-11/BMP-CSR-11.

Example: If the nickel metal analysis is 5.7g/L (0.76 oz/gal) then add back 3 ml/L (0.38 fl. oz/gal) BMP A-11 and 3 ml/L (0.38 fl. oz/gal) BMP-C-11 or BMP-CSR-11.

pH- Measure the pH after all other adjustment have been made. Make adjustments using dilute 1:1 ammonium hydroxide or potassium hydroxide to raise the pH. Use 20%/volume sulfuric acid to lower the pH.

ANALYTICAL PROCEDURE

DETERMINATION OF NICKEL METAL

Reagents required: Standardized 0.1M or 0.0575 M EDTA Concentrated ammonia hydroxide Murexide Indicator Deionized water Murexide indicator – combine approximately 0.25 grams murexide with 95 grams of table sugar and mix thoroughly.

- 1. Pipette 5 ml. bath sample into a 250 ml Erlenmeyer flask.
- 2. Add approximately 100 ml Deionized water.
- 3. Add 10 ml of concentrated ammonium hydroxide.
- 4. Add 0.2 grams murexide indicator.
- 5. Titrate immediately with the 0.1 or 0.0575M standardized EDTA to a magenta endpoint.

CALCULATION: Nickel metal $(g/L) = ml 0.0575M EDTA \times 0.674$ or ml 0.1M EDTA $\times 1.174$ Nickel metal $(oz/gal) = ml 0.0575M EDTA \times 0.090$ or ml 0.1M EDTA $\times 0.1565$

HELPFUL HINTS

рΗ

Use a calibrated pH meter to check the pH. Make measurements with the sample cooled to room temperature. The solution pH should be checked regularly to insure it is maintained within the operating parameters.

To raise the pH use 1:1 dilute ammonium hydroxide or potassium hydroxide. To lower the pH use 20%/vol. sulfuric acid.

TEMPERATURE

Maintain the temperature of the plating bath within specified limits. The use of derated heaters (low watt density) is highly recommended to maintain the solution temperature of the bath.

High temperatures can spontaneously decompose the bath. Low temperatures will slow the plating rate of the bath.

NICKEL DEPOSIT PROPERTIES

Phosphorous Content - 6-9% (varies depending on operating pH and bath age)

Hardness - 500-700 (VHN) as plated, 900-1000(VHN) heat treated.

Appearance - Bright reflective deposit

Density - Approximately 7.9 g/cc

TROUBLESHOOTING GUIDE

PROBLEM	CAUSE	SOLUTION
Poor adhesion to substrate	Poor cleaning prior to plating Organic contamination Metallic contamination	Improve the cleaning process Dump bath Dummy plate
Bath plate out	Temperature too high pH too high Additives out of balance	Lower the temperature Lower the pH Adjust additives
Slow plating rate	Nickel build-up on equipment Temperature is too low pH is too low Additives out of balance Metallic contamination	Strip and passivate tank Increase the temperature Increase the pH Adjust additives Dummy plate
No deposit	Temperature is too low pH is too low Metallic contamination Organic contamination Additives out of balance	Increase the temperature Increase the pH Try to dummy plate Dump bath Adjust additives
Pitting	Low agitation Organic contamination Metallic contamination	Increase agitation Dump bath Dummy plate
Dull deposit	pH is too low Organic contamination Metallic impurities Additives out of balance	Increase the pH Dump bath Dummy plate Adjust additives
Rough deposit	pH is too high Particulate in bath Additives out of balance	Lower the pH Improve filtration Adjust additives
Dark deposit	Metallic contamination Organic impurities	Dummy plate Dump bath
Streaks and/or patterns	Metallic contamination Organic contamination Low surface area	Dummy plate Dump bath Increase surface area
Blisters	Poor cleaning prior to plating Metallic contamination Organic contamination Temperature is too high	Improve the cleaning process Dummy plate Dump bath Lower the temperature

HANDLING & STORAGE

Columbia Chemical recommends referring to the specific product Safety Data Sheets for safety, handling, and storage precautions.

NON-WARRANTY

The data contained in this bulletin is believed by Columbia Chemical Corp. to be accurate, true, and complete. Since, however, final methods of use of this product are in the hands of the customer and beyond our control, we cannot guarantee that the customer will obtain the results described in this bulletin, nor can we assume responsibility of the use of this product by the customer in any process which may infringe the patents of third parties.