

# COLLOY A-Z-N 300

TECHNICAL DATA 02-24-2022

1000 Western Drive Brunswick, OH 44212 PHONE: 330-225-3200 FAX: 330-225-1499 www.columbiachemical.com

# COLLOY A-Z-N 300 PROCESS FOR ZINC/NICKEL ALLOY PLATING FROM AN AMMONIUM AND BORIC ACID-FREE PLATING BATH

| COLLOY A-Z-N 300 | provides a level, mirror-bright, ductile electro-deposited zinc-nickel alloy containing from 12 - 15% nickel that is evenly distributed at low, mid and high current densities.                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COLLOY A-Z-N 300 | operates at lower, more economical temperatures between 90 - 100° F (32 - 37° C).                                                                                                                                          |
| COLLOY A-Z-N 300 | deposits accept trivalent blue, yellow and black as well as other hexavalent passivates.                                                                                                                                   |
| COLLOY A-Z-N 300 | can readily plate substrates such as malleable iron castings, heat-treated, and other hardened steels.                                                                                                                     |
| COLLOY A-Z-N 300 | is free from boric acid and ammonium salts and does not require separate rectifiers.<br>COLLOY A-Z-N 300 user-friendly four additive system: Buffer, Complexer, Wetter,<br>Brightener.                                     |
| COLLOY A-Z-N 300 | second-generation product that offers improved ductility, better-throwing power,<br>enhanced brightness across current densities, more uniform alloy, > 95% efficiency,<br>less dissolution of zinc anodes during downtime |

### **OPERATING PARAMETERS**

#### **RACK PLATING AND BARREL PLATING - YIELDS 12 - 15 % NICKEL**

|                              | RANGE                              | OPTIMUM             |
|------------------------------|------------------------------------|---------------------|
| Zinc Metal:                  | 2.0 - 4 oz/gal (15 - 30 g/L)       | 2.6 oz/gal (20 g/L) |
| Nickel Metal:                | 2.0 - 4.6 oz/gal (15 - 35 g/L)     | 4 oz/gal (30 g/L)   |
| Nickel-Zinc Metal Ratio:     | 0.6:1 - 2.0:1                      | 1.5:1               |
| Total Chloride:              | 16.6 - 23.3 oz/gal (125 - 175 g/L) | 20 oz/gal (150 g/L) |
| COLLOY A-Z-N BUFFER 310:     | 3.6 - 6 oz/gal (27 - 45 g/L)       | 4.8 oz/gal (36 g/L) |
| COLLOY A-Z-N COMPLEXER 320:  | 0.5 - 1.5%                         | 1%                  |
| COLLOY A-Z-N WETTER 330:     | 0.2 - 0.75%                        | 0.375%              |
| COLLOY A-Z-N BRIGHTENER 340: | 0.075 - 0.2%                       | 0.1%                |

| pH:                    | 5.0 - 5.6                                  | 5.3           |
|------------------------|--------------------------------------------|---------------|
| Operating Temperature: | 90 - 100° F (32 - 37° C)                   | 95° F (35° C) |
| Agitation:             | Mild uniform air agitation as recommended. |               |

### SOLUTION MAKE-UP

|                                                          | <u>100 LITERS</u> | 100 GALLONS     |
|----------------------------------------------------------|-------------------|-----------------|
| Zinc Chloride:                                           | 4.17 kg           | 34.8 pounds     |
| Nickel Chloride (NiCl <sub>2</sub> · 6H <sub>2</sub> O): | 12.15 kg          | 101.4 pounds    |
| Potassium Chloride:                                      | 20.0 kg           | 166.9 pounds    |
| COLLOY A-Z-N BUFFER 310:                                 | 3.6 kg            | 30.0 pounds     |
| COLLOY A-Z-N COMPLEXER 320:                              | 1.0 liters        | 1 gallon        |
| COLLOY A-Z-N WETTER 330:                                 | 375 mL            | 12.68 fluid oz. |
| COLLOY A-Z-N BRIGHTENER 340:                             | 100 mL            | 3.38 fluid oz   |

Make-Up of the bath as written above will yield an optimum operating analysis of:

| Zinc Metal:         | 2.6 oz/gal (20 g/L)                           |
|---------------------|-----------------------------------------------|
| Nickel Metal:       | 4 oz/gal (30 g/L)                             |
| Total Chloride:     | 20 oz/gal (150 g/L)                           |
| pH (Electrometric): | 5.3 (after adjustment with hydrochloric acid) |

The following equivalents should be noted when maintaining the chloride, zinc, and nickel content of the bath:

| Potassium Chloride (KCI):                                | contains 48% chloride                   |
|----------------------------------------------------------|-----------------------------------------|
| Zinc Chloride (ZnCl <sub>2</sub> ):                      | contains 52% chloride, 48% zinc metal   |
| Nickel Chloride (NiCl <sub>2</sub> · 6H <sub>2</sub> O): | contains 30% chloride, 24% nickel metal |

### EQUIPMENT

All plating tanks, racks carriers, etc. should be plastisol, polyethylene, hard rubber, or similarly coated to provide adequate protection from corrosion.

## MAINTENANCE ADDITIONS

#### COLLOY A-Z-N BUFFER 310

Contains buffering components that prevent high current density burning and increase the nickel within the alloy deposit. It must be replaced in the plating bath as it is lost through drag out.

#### COLLOY A-Z-N COMPLEXER 320

Contains complexing agents that enhance the brightness and alloy uniformity of the alloy as well as prevent high current density burns. It must be replaced in the plating bath as it is lost primarily by dragout. Recommended addition rate is based solely on dragout calculations, which often amount to approximately 1 - 2 L per 10,000 Amp-Hours based on a medium dragout rate.

#### **COLLOY A-Z-N WETTER 330**

Contains surfactants that lower the surface tension of the system to prevent pitting, dispel gassing, etc. It must be replaced in the plating bath as it is lost primarily by dragout. Recommended addition rate is 375 - 500 mL per 10,000 Amp Hours.

#### **COLLOY A-Z-N BRIGHTENER 340**

Helps provide a mirror-bright deposit across a wide range of current densities. It is primarily consumed by electrolysis and must be added regularly. Recommended addition rate is 3 - 4.5 L per 10,000 Amp-Hours.

#### ZINC METAL

Is normally maintained by anodic dissolution during electrolysis. High-grade zinc slab anodes of a minimum of 99.99% purity are recommended as an economical anode source. Anodes may be drilled and tapped or used in titanium anode baskets. Zinc anode baskets need to be removed during idle periods to prevent the build-up of zinc metal. Anode baskets should be kept full. Acid-resistant anode bags of cotton, dynel, or polypropylene are recommended for rack operation to reduce anode-caused roughness. Zinc anode baskets can be cleaned in 20 - 30% Hydrochloric Acid if polarization occurs. (NOTE: Liquid Zinc Chloride can also be used to adjust and maintain proper zinc metal level.)

#### NICKEL METAL

Is maintained through the use of Nickel anodes in combination with Zinc anodes. Typically, 1 full nickel anode basket is used per 2 full zinc anode baskets. Adjustments should be made to the nickel-zinc ratio to maintain optimum metal content. (NOTE: Liquid Nickel Chloride or Nickel Chloride Salt can also be used to maintain the Nickel-metal level.)

#### FILTRATION

Continuous filtration through polypropylene filter tubes of approximately 15 microns is recommended for routine operation. When carbon treatment or other bath purification is necessary, 5 - 10-micron filter tubes should be substituted.

#### **COOLING COILS**

Made from Teflon are optimum, but titanium coils may be used as long as they are insulated from the electrical circuit. Lead or steel coils are not suitable.

# ANALYTICAL PROCEDURE

#### ANALYSIS FOR ZINC METAL IN THE PLATING SOLUTION

#### **REAGENTS**

**Concentrated Nitric Acid** 

#### PROCEDURE

- 1. Pipette 10 mL bath solution into a 100 mL volumetric flask.
- 2. Add 50 mLs distilled water and 2-3 mLs concentrated nitric acid to the flask.
- 3. Dilute to 100 mL volume with distilled water. Mix well.
- 4. Pipette 1.0 mL of the above-diluted bath solution from Step 3 into a new 100 mL volumetric flask.
- 5. Dilute to volume with distilled water. Mix well.
- 6. Determine zinc content through Atomic Absorption Spectroscopy.

FACTOR: (AA Conc.) x 1,000 = ppm Zinc metal (ppm = mg per liter)

#### ANALYSIS FOR TOTAL CHLORIDE

#### PROCEDURE

- 1. Pipette 10 mL bath sample into a 250 mL volumetric flask. Dilute to 250 mL with distilled water and mix well.
- 2. Pipette 10 mL of the above solution into a 250 mL Erlenmeyer flask and dilute to 100 mL with distilled water.
- 3. Add 5 mL Sodium Chromate Indicator.
- 4. Titrate with Standard Silver Nitrate Solution 0.153 N to a reddish-brown endpoint. (The first permanent brown color is the endpoint).

FACTOR: (mL Standard Silver Nitrate Solution 0.153 N) x 1.82 = oz/gal Chloride (oz/gal x 7.5 = g/L)

#### ANALYSIS FOR COLLOY A-Z-N BUFFER 310

#### PROCEDURE

- 1. Pipette 10 mL bath sample into a 250 mL volumetric flask. Dilute to 100 mL with distilled water and mix well.
- 2. Add 2 3 mL Methyl Orange Indicator.
- 3. Titrate with Standard Hydrochloric Acid Solution 0.1 N from a bright yellow solution to an orangered solution.
- FACTOR: mL Standard Hydrochloric Acid Solution 0.1 N x 2.268 = % of Optimal COLLOY A-Z-N BUFFER 310

#### ANALYSIS FOR NICKEL METAL IN THE PLATING SOLUTION

#### **REAGENTS**

Concentrated Nitric Acid

#### PROCEDURE

- 1. Pipette 10 mL bath solution into a 100 mL volumetric flask.
- 2. Add 50 mLs distilled water and 2-3 mLs concentrated nitric acid to the flask.

- 3. Dilute to 100 mL volume with distilled water. Mix well.
- 4. Pipette 1.0 mL of the above-diluted bath solution from Step 3 into a new 100 mL volumetric flask.
- 5. Dilute to volume with distilled water. Mix well.
- 6. Determine nickel content through Atomic Absorption Spectroscopy.

FACTOR: (AA Conc.) x 1,000 = ppm Nickel metal (ppm = mg per liter)

#### **ANALYSIS FOR % NICKEL IN DEPOSIT OF PLATED PARTS**

#### **REAGENTS**

Concentrated Hydrochloric Acid Pickle Pal

#### PROCEDURE

- 1. Weigh sample part or parts and record the weight as "Weight #1"
- 2. Add approx. 1% Pickle Pal to enough conc. hydrochloric acid to cover the sample part(s). If the total volume to immerse the parts is 500 mLs solution then you would use 5mLs. of Pickle Pal and 495 mL conc. hydrochloric acid.
- 3. Immerse the parts in the acid solution and strip the electroplate off the base metal. The stripping is complete when the blackish color is totally removed from the substrate.
- 4. Remove the parts from the solution and rinse with additional water. Record total volume of water used.
- 5. Add the acid stripping solution to the rinse water. Record the total volume as "Acid Volume".
- 6. Completely dry the part(s) that were stripped and weighed. Record this as "Weight #2".
- 7. Determine nickel content of the acid solution by Atomic Absorption Spectroscopy.

#### FACTOR:

- 1. "Weight #1" "Weight #2" = "Weight of electroplate" (in gms)
- 2. <u>"Weight of electroplate" (gms)</u> x 1,000,000 = ppm electroplate "Acid Volume" (mL)
- 3. ppm Nickel (from AA) x 100 = % Nickel in deposit ppm electroplate

### HANDLING & STORAGE

Columbia Chemical recommends referring to the specific product Safety Data Sheets for safety, handling, and storage precautions.

### NON-WARRANTY

The data contained in this bulletin is believed by Columbia Chemical Corp. to be accurate, true, and complete. Since, however, the final methods of use of this product are in the hands of the customer and beyond our control, we cannot guarantee that the customer will obtain the results described in this bulletin, nor can we assume responsibility for the use of this product by the customer in any process which may infringe the patents of third parties.